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definition

• definition: (X1, . . . ,Xn) is a random sample of size n from the population fX (x) if they are
mutually independent random variables with the same marginal pmf/pdf given by fX (x).

• alternatively, we say that X1, . . . ,Xn are independent and identically distributed (iid) with
pmf/pdf fX (x)

fX (x1, . . . , xn|θ) = fX (x1|θ) · · · fX (xn|θ) =
n∏

i=1

fX (xi |θ)

• statistical setting: we assume that the population we observe belongs to a given parametric
family, but the true parameter value is unknown.
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joint pdf of an exponential sample

• let X1, . . . ,Xn form a random sample from an exponential distribution with parameter λ, then the
joint pdf reads

fX (x1, . . . , xn|λ) =
n∏

i=1

fX (xi |λ) =
n∏

i=1

1
λ
e−xi/λ =

e−
∑n

i=1 xi/λ

λn

• example: what is the probability of all Xi last more than 2 years?

P(X1 > 2, . . . ,Xn > 2|λ) = P(X1 > 2|λ) · · ·P(Xn > 2|λ)
= [P(X1 > 2|λ)]n

=
(
e−2/λ

)n
= e−2n/λ
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sampling from an infinite population

• independence assumption implies that drawing Xi does not affect the distribution of Xj and hence
the latter is from the same population

− it is as if the population were infinite

• finite populations: data collection now matters in that the iid assumption may not hold depending
on how one samples from the population is with vs without replacement

• examples:

(i) bootstrap employs a resampling scheme with replacement

(ii) no replacement kills independence, P(Xi = x |Xj = x) = 0 but with independence
P(Xi = x) = P(Xj = x)
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near independence

• definition: X1, . . . ,Xn are nearly independent if population size is large enough and hence one may
evoke random sampling as an approximation

• example: P(Xi = x |Xj = xj) =
1

n−1
∼= P(Xi = x |Xj = x) = 0 for n large enough

• example: draw a sample {X1, . . . ,X10} without replacement from a discrete uniform population
{1, . . . , 1000} (hypergeometric distribution)

P(X1 > 200, . . . ,X10 > 200) =

(800
10

)(200
0

)(1000
10

) = 0.106164

∼= P(X1 > 200) · · ·P(X10 > 200)

= 0.810 = 0.107374
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statistic

• we usually compute some value after a sample X1, . . . ,Xn is drawn.

• definition: let (X1, . . . ,Xn) denote a random sample of size n from a population, then the random
vector Y = T (X1, . . . ,Xn) is a statistic if it is a vector-valued function of X1, . . . ,Xn whose
domain includes the sample space of X1, . . . ,Xn

− the definition is very broad, but restriction is that Y cannot be a function of parameters.

• because random samples have a simple probabilistic structure, the sampling distribution of
T (X1 . . . ,Xn) is particularly tractable.
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statistic

• examples:

− T (x1, . . . , xn) = 1

− T (x1, . . . , xn) = x1

− T (x1, . . . , xn) = max{x1, . . . , xn} (maximum)

− T (x1, . . . , xn) =
1
n

∑n
i=1 xi = x̄n (sample mean)

− T (x1, . . . , xn) =
1

n−1
∑n

i=1(xi − x̄n)2 = s2n (sample variance)

− T (x1, . . . , xn) =
√

s2n = sn (sample standard deviation)

• note that we often write T = T (x1, . . . , xn)

• functions of random variables are themselves random variables: we write X̄n and x̄n for a particular
realized value.
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sample mean, variance, and standard deviation

• theorem (CB 5.2.4): let x1, . . . , xn denote any real numbers and let x̄n ≡ 1
n

∑n
i=1 xi , then

(i) mina
∑n

i=1(xi − a)2 =
∑n

i=1(xi − x̄n)2

(ii) (n − 1)s2n ≡
∑n

i=1(xi − x̄n)2 =
∑n

i=1 x
2
i − n x̄2

n

• proof of (i):

n∑
i=1

(xi − a)2 =
n∑

i=1

(xi − x̄n + x̄n − a)2

=
n∑

i=1

(xi − x̄n)
2 + 2

n∑
i=1

(xi − x̄n)(x̄n − a)︸ ︷︷ ︸
(x̄n−a)

∑n
i=1(xi−x̄n)=0

+
n∑

i=1

(x̄n − a)2

=
n∑

i=1

(xi − x̄n)
2 +

n∑
i=1

(x̄n − a)2

which is minimized when a = x̄ .
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sample mean, variance, and standard deviation

• proof of (ii): taking a = 0,

n∑
i=1

x2
i =

n∑
i=1

(xi − x̄n)
2 +

n∑
i=1

x̄2
n

=
n∑

i=1

(xi − x̄n)
2 + nx̄2

n

■
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sample mean, variance, and standard deviation

• theorem (CB 5.2.5): let X1, . . . ,Xn form a random sample from a population and let g(x) be a
function such that E[g(X )] and var[g(x)] exist, then

(i) E
[∑n

i=1 g(Xi )
]
= nE[g(X1)]

(ii) var
[∑n

i=1 g(Xi )
]
= n var[g(X1)]

• proof: note that

E

(
n∑

i=1

g(Xi )

)
=

n∑
i=1

Eg(Xi )
iid
=

n∑
i=1

Eg(X1) = n · Eg(X1)

for the second part,

var

(
n∑

i=1

g(Xi )

)
= E

[
n∑

i=1

g(Xi )− E

(
n∑

i=1

g(Xi )

)]2

= E

[
n∑

i=1

g(Xi )−
n∑

i=1

Eg(Xi )

]2
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sample mean, variance, and standard deviation

• proof (cont’d):

E

[
n∑

i=1

g(Xi )−
n∑

i=1

Eg(Xi )

]2

= E

[
n∑

i=1

g(Xi )− Eg(Xi )

]2

= E

[
n∑

i=1

hi

]2

denoting hi ≡ g(Xi )− Eg(Xi ). Then

E

[
n∑

i=1

hi

]2

=
n∑

i=1

Eh2
i +

n∑
i=1

n∑
j=1,j ̸=i

E(hihj)

but E(hihj) = E ([g(Xi )− Eg(Xi )][g(Xj)− Eg(Xj)]) = cov(g(Xi ), g(Xj)) = 0. It follows that

E

[
n∑

i=1

hi

]2

=
n∑

i=1

Eh2
i =

n∑
i=1

E(g(Xi )− Eg(Xi ))
2

=
n∑

i=1

var(g(Xi ))
iid
=

n∑
i=1

var(g(X1)) = n · var(g(X1))

■
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sample mean, variance, and standard deviation

• theorem (CB 5.2.6): if the population has mean µ and variance σ2, then

(i) E(X̄n) = µ unbiasedness

(ii) var(X̄n) = σ2/n precision

(iii) E(S2
n ) = σ2 unbiasedness

• proof (i):

E(X̄n) = E

(
1
n

n∑
i=1

Xi

)
=

1
n
E

(
n∑

i=1

Xi

)
=

n

n
E(X1) = µ

• proof (ii):

var(X̄n) = var

(
1
n

n∑
i=1

Xi

)
=

1
n2 var

(
n∑

i=1

Xi

)
=

n

n2 var(X1) =
σ2

n
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sample mean, variance, and standard deviation

• proof (iii):

E(S2) = E

(
1

n − 1

[
n∑

i=1

X 2
i − nX̄ 2

])
iid
=

1
n − 1

(
nEX 2

1 − nEX̄ 2)
=

1
n − 1

(
n(σ2 + µ2)− n

(
σ2

n
+ µ2

))
=

1
n − 1

(
nσ2 − σ2)

= σ2

which completes the proof. ■
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sample mean, variance, and standard deviation

• definition: we say that the statistic T is unbiased for the parameter θ if E(T ) = θ.

• according to the example above, X̄n is unbiased for µ and S2
n is unbiased for σ2.

• we will now discuss in more detail the distribution of X̄n.
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sampling distribution of the mean
• theorem (CB 5.2.7): let (X1, . . . ,Xn) be a random sample from a population with pdf fX (x) and

mgf MX (t) and denote Y = X1 + · · ·+ Xn. Then

fX̄n
(x) = nfY (nx)

MX̄n
(t) = [MX (t/n)]

n

• proof: the first result is rather mechanical since X̄n = n−1Y and applying the change-of-variable
theorem. For the latter, apply the theorem that if X1, . . . ,Xn are independent, then for
Z =

∑n
i=1 aiXi + bi ,

MZ (t) =
(
et

∑
bi
) n∏

i=1

MXi (ai t)

so

MX̄ (t) =
n∏

i=1

MXi

(
1
n
t

)
iid
=

[
MX

(
1
n
t

)]n
■
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sampling distribution of the mean

• example: let X1, . . . ,Xn form a random sample from a normal distribution with mean µ and
variance σ2, then the mgf of the sample mean is

MX̄n
(t) = [MX (t/n)]

n =

[
exp

(
µt

n
+

σ2(t/n)2

2

)]n
= exp

(
µt +

(σ2/n) t2

2

)
and hence X̄n ∼ N(µ, σ2/n)
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sampling from a location-scale family

• let (X1, . . . ,Xn) denote a random sample from a location-scale family 1
σ
f
(
x−µ
σ

)
, then the

distribution of X̄n has a simple relationship with the distribution of the sample mean Z̄n of a
random sample from the standard family distribution f (z)

• how?

(i) there exist random variables Z1, . . . ,Zn such that Xi = σZi + µ

(ii) Z1, . . . ,Zn are also mutually independent

(iii) X̄n = 1
n

∑n
i=1 Xi =

1
n

∑n
i=1(σZi + µ) = σZ̄n + µ

(iv) if Z̄n ∼ g(z), then X̄n ∼ 1
σ
g
(

x−µ
σ

)
• example: if (X1, . . . ,Xn) is a random sample from a Cauchy(µ, σ2), then X̄n ∼ Cauchy(µ, σ2) as

well
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sample mean and variance

• theorem: let (X1, . . . ,Xn) be a random sample from a N(µ, σ2) population, then

(i) X̄n ∼ N(µ, σ2/n)

(ii) n−1
σ2 S2

n ∼ χ2
n−1

(iii) X̄n and S2
n are independent random variables

(iv)
√
n(X̄n−µ)

Sn
∼ tn−1

• proof (i): already established

19 / 96



sample mean and variance

• before moving ahead with the proof of (ii), let’s establish some facts about quadratic forms

• definition: let Z be a n-dimensional vector of independent random normal variables. Then

Z ′Z =
n∑

i=1

Z 2
i ∼ χ2

n

and the pdf of a χ2
p is f (x) = 1

Γ(p/2)2p/2 x
(p/2)−1e−x/2

• let X ∼ N(0,Σ). Then

X ′Σ−1X = X ′Σ− 1
2 Σ− 1

2 X = Z ′Z ∼ χ2
n

since Σ− 1
2 X ∼ N(0, I ).

• theorem: let P be an m-dimensional orthogonal projection matrix in Rn. That is, P2 = P
(projection matrix) and P ′P = PP ′ = I and P ′ = P−1 (orthogonal matrix) then Z ′PZ ∼ χ2

m with
Z ∼ N(0, I ).
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sample mean and variance

• proof (ii): define Pι = ι(ι′ι)−1ι′ = ιι′

n
, where ι is the n-dimensional vector of ones. Let

M = I − Pι be the annihilator matrix. Note that
− Pι is symmetric (verify)
− Pι is a projection matrix: P2

ι = ιι′

n
ιι′

n
= ιι′ιι′

n2 = ιι′

n
= Pι

− MX = (I − Pι)X = X − ιX̄
− M′M = (I − Pι)′(I − Pι) = (I − Pι) = M
− PιX = ιX̄n

− (See Hansen (2021) section 3.11 for more details on projection and annihilator matrices.)

then

n − 1
σ2 S2

n =
1
σ2

n∑
i=1

(Xi − X̄n)
2 =

1
σ2 ((I − Pι)X )′ ((I − Pι)X )

=
1
σ2X

′(I − Pι)
′(I − Pι)X

=
1
σ2X

′(I − Pι)X
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sample mean and variance
• proof (ii) (cont’d):

1
σ2X

′(I − Pι)X =
1
σ2 (X − µι)′(I − Pι)(X − µι)

because

(X − µι)′(I − Pι) = X ′(I − Pι)− µι′(I − Pι)

= X ′(I − Pι)− µ(ι′ − ι′Pι)

= X ′(I − Pι)− µ

(
ι′ − 1

n
ι′ιι′

)
= X ′(I − Pι)− µ

(
ι′ − ι′

)
= X ′(I − Pι)

so

n − 1
σ2 S2

n =

(
X − µι

σ

)′

︸ ︷︷ ︸
=Z

(I − Pι)

(
X − µι

σ

)
︸ ︷︷ ︸

=Z

given that I − Pι is a (n − 1)-dimensional orthogonal projection, it follows from the previous
theorem that n−1

σ2 S2
n ∼ χ2

n−1 ■
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sample mean and variance

• yet some additional results before proof (iii).

• fact (verify): if X ∼ N(µ,Σ) then AX + B ∼ N(Aµ+ B,AΣA′)

• theorem: let Z ∼ N(0, I ) and A and B non-random matrices. Then A′Z and B ′Z are independent
if, and only if, A′B = 0.

• proof: define C = (A,B) and write CZ ∼ N(Cµ,CΣC ′). using the result above, see that the
covariance between A′Z and B ′Z is zero if, and only if, A′B = 0.
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independence and chi-squared random variables

• proof (iii): write

X̄n =
1
n
ι′PιX

S2
n =

1
n − 1

((I − Pι)X )′((I − Pι)X )

and note that PιX and (I − Pι)X are orthogonal:

(PιX )′(I − Pι)X = X ′P ′
ιX − X ′P ′

ιPιX

= X ′PιX − X ′PιX

= 0

hence PιX and (I − Pι)X are independent. X̄n and S2
n are functions of independent random

variables, so are themselves independent. ■
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Student’s t distribution

• if X1, . . . ,Xn be a random sample of independent N(µ, σ2), then

√
n
X̄n − µ

σ
∼ N(0, 1)

• however, most of the time, we do not know σ, and hence the best we can do is to use

√
n
X̄n − µ

Sn
=

√
n
X̄n − µ

σ

1√
S2
n /σ2

= U · 1√
V /(n − 1)

∼ tn−1

given that X̄n and S2
n are independent, U ∼ N(0, 1) and V ∼ χ2

n−1 are independent.
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Student’s t distribution

• then, since U and V are independent, (to simplify, p = n − 1)

fU,V (u, v) =
1

(2π)
1
2
e−u2/2 1

Γ
(
p
2

)
2p/2

v (p/2)−1e−v/2

for −∞ < u < ∞ and 0 < v < ∞. Use the transformation

t =
u√
v/p

and w = v

where the inverse functions are

u = t
√

w/p and v = w

with Jacobian

J =

∣∣∣∣ ∂u
∂t

∂u
∂w

∂v
∂t

∂v
∂w

∣∣∣∣ =
∂u

∂t

∂v

∂w
− ∂u

∂w

∂v

∂t
=

√
w

p
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Student’s t distribution
• So the marginal pdf of T is

fT (t) =

∫ ∞

0
fU,V

(
t

√
w

p
,w

)√
w

p
dw

=
1

(2π)
1
2

1
Γ
(
p
2

)
2p/2p1/2

∫ ∞

0
e−t2 w

2p w (p/2)−1e−w/2
√

w

p
dw

=
1

(2π)
1
2

1
Γ
(
p
2

)
2p/2p1/2

∫ ∞

0
e−

w
2 (1+t2/p)w ((p+1)/2)−1 dw︸ ︷︷ ︸

=kernel of G((p+1)/2,2/(1+t2/p))

=
1

(2π)
1
2

1
Γ
(
p
2

)
2p/2p1/2

Γ

(
p + 1

2

)[
2

1 + t2/p

](p+1)/2

which is the Student’s t distribution with parameter p.

• Gamma distribution, X ∼ G(k, θ):

fX (x) =
1

Γ(k)θk
xk−1e−

x
θ

• this completes the proof of (iv)!
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Student’s t distribution

Some properties of the t distribution:

• with p = 1, T1 becomes the pdf of a Cauchy

• so inference with sample size 2 is impossible!

• E(Tp) = 0 if p > 1 and var(Tp) =
p

p−2 if p > 2

• does not have moments of all orders - no mgf either

• normal distribution approximates well for large p
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Snedecor’s F distribution

• definition: let X1, . . . ,Xn ∼ N(µX , σ
2
X ) ⊥⊥ Y1, . . . ,Ym ∼ N(µY , σ

2
Y ), then

S2
X ,n/S

2
Y ,m

σ2
X/σ

2
Y

=
S2
X ,n/σ

2
X

S2
Y ,m/σ

2
Y

=
χ2
n−1/(n − 1)

χ2
m−1/(m − 1)

∼ Fn−1,m−1

given that the two chi-squared distributions are independent

f (x) =
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

)p/2
xp/2−1

[1 + (p/q)x ](p+q)/2

with mean E(Fp,q) =
q

q−2 if q > 2, so that the expected value of the variance ratio is
approximately one if the sample size is large enough.

• theorem:

(i) if X ∼ Fp,q , then 1/X ∼ Fq,p

(ii) if X ∼ tq , then X 2 ∼ F1,q

(iii) if X ∼ Fp,q , then (p/q)X/(1 + (p/q)X ) ∼ B(p/2, q/2)
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order statistics

• Some possible applied questions:
− What is the a maximum rainfall in any given year?
− The lowest price of a stock?
− The median value of house prices? (or even quantiles)

• definition: the order statistics of a sample X1, . . . ,Xn are the sample values placed in ascending
order, denoted

X(1), . . . ,X(n)

satisfying mini Xi = X(1) ≤ X(2) ≤ · · · ≤ X(n) = maxi Xi .

• Since Xi are random variables, X(i) are also random variables. Our goal is to describe the
pdfs/pmfs for some cases.
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order statistics

• of particular interest is the sample median

M =

{
X((n+1)/2) if n is odd
1
2X(n/2) +

1
2X((n+1)/2) if n is even

which less sensitive to extreme observations (or outliers) than the sample mean.

• the p-quantile is the observation such that np observations are smaller and n(1 − p) are greater,
p ∈ [0, 1].

− lower(upper) quartile is the 0.25-quantile (0.75-quantile)

• the sample range,

R = X(n) − X(1)

which is an alternative measure of dispersion.
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order statistics

• theorem (CB 5.4.3): let X1, . . . ,Xn be a random sample from a discrete distribution with pmf
fX (xi ) = pi , where x1 < x2 < . . . are the possible values of X . Define

P0 = 0

P1 = p1

P2 = p1 + p2

...

Pi =
i∑

j=1

pi

Then

P
(
X(j) ≤ xi

)
=

n∑
k=j

(
n

k

)
Pk
i (1 − Pi )

n−k

P
(
X(j) = xi

)
=

n∑
k=j

(
n

k

)[
Pk
i (1 − Pi )

n−k − Pk
i−1(1 − Pi−1)

n−k
]

32 / 96



order statistics

• proof: fix i and count the number of Xi that are less than or equal to xi . The event {Xj ≤ xi} is a
"success", and otherwise a "failure". The question becomes: how many successes Y are there?
Given that trials are independent, so Y ∼ Bin(n,Pi ).

• the second part only expresses the differences

P{X(j) = xi} = P{X(j) ≤ xi} − P{X(j) ≤ xi−1} ■

• there is a similar theorem for the continuous case, but we will do one example instead.
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order statistics

• example: let X1, . . . ,Xn be i.i.d. random variables and define Y = max{X1, . . . ,Xn}. The
distribution function of Y is given by

FY (y) = P

(
n⋂

i=1

{Xi ≤ y}

)

=
n∏

i=1

P {Xi ≤ y}

= (FY (y))
n
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spoiler of next slides

a.s.−→
=⇒

p−→ =⇒ d−→

=⇒
Lp

−→
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non-stochastic convergence

• suppose you have a non-stochastic sequence {an}∞n=1.

• we say that {an}∞n=1 converges to a if, and only if, for each ϵ > 0 there exists a N ∈ N such that if
n > N, we have that

|an − a| < ϵ

and we write an −→ a or limn→∞ an = a.

• example 1: an = 1 + 1
n

⇒ limn→∞ an = 1.

• proof: fix ϵ > 0. We want to select an N such that |an − a| = n−1 < ϵ for n > N. Set N = 1
ϵ
− 1.

For n > N = 1
ϵ
− 1, we have that n−1 < ϵ

1−ϵ
< ϵ. So the sequence converges to 1.
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non-stochastic convergence

• example 2: an = sin(n)
n

⇒ limn→∞ an = 0

• proof: fix ϵ > 0 and choose N > 1
ϵ
. Since −1 ≤ sin(n) ≤ 1, we have that | sin(n)| < 1. Therefore∣∣∣∣ sin(n)n

− 0
∣∣∣∣ =

| sin(n)|
n

≤ 1
n

<
1
N

<
1

1/ϵ
= ϵ

• example 3: for any w ∈ R, define the sequence

{a1, a2, . . .} = {w + 1,w ,w + 1,w ,w ,w + 1,w ,w ,w ,w + 1, . . .}

and suggest the limit a = w , so |an − a| = {1, 0, 1, 0, 0, 1, . . .}. If the series converges, for any
ϵ > 0, there must exist an N such that n > N implies that |an − a| < ϵ.

Take ϵ = 2. It is true that |an − a| < ϵ for any n, so suffices to take N = 1.

Take ϵ = 0.5. There isn’t an N such that |an − a| < ϵ for every n > N, so the sequence does not
converge.
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non-stochastic convergence

• definition does not apply to sequence of random variables {Xn}: we would have |Xn − X | < ϵ
sometimes being true, sometimes being false...

• example: take Xn ∼ N(0, σ2

n
) and suggest X = 0. Even for "very high" n, it is possible that

|Xn − X | > ϵ. So we can never find for sure an N such that |Xn − X | < ϵ for n > N.

• we can only say what is the probability of being true.

• the probability is not a random variable!
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convergence in probability

• definition: a sequence of random variables X1,X2, . . . converges in probability to a random
variable X if, for every ϵ > 0,

lim
n→∞

P(|Xn − X | ≥ ϵ) = 0

or, equivalently,
lim

n→∞
P(|Xn − X | < ϵ) = 1

• for reasons that will be clearer soon, we will come back to the σ-algebra notation for an equivalent
- and more formal - definition.

• definition: let Xn be defined on a common probability space (Ω,F ,P). {Xn} converges in
probability to X if, for any ϵ > 0,

P (ω : |Xn(ω)− X (ω)| ≥ ϵ) −→ 0

• if Xn converges in probability to X we write Xn
p−→ X .
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convergence in probability

• example (cont’d): take Xn ∼ N(0, σ2

n
) and suggest X = 0.

P (|X1 − X | < ϵ) = Φ(ϵ/σ)− Φ(−ϵ/σ) = 2 · Φ(ϵ/σ)− 1

P (|X2 − X | < ϵ) = 2 · Φ(
√

2ϵ/σ)− 1
...

P (|Xn − X | < ϵ) = 2 · Φ(
√
nϵ/σ)− 1

where Φ is the cdf of the standard normal.

• From the definition of a cdf, we get that

lim
n→∞

Φ(
√
nϵ/σ) = 1 ⇒ lim

n→∞
2 · Φ(

√
nϵ/σ)− 1 = 1

so the deterministic sequence of probabilities converges to 1, i.e., Xn converges in probability.
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convergence in probability

• theorem (weak law of large numbers) (CB 5.5.2): let X1,X2, . . . denote iid random variables with
E(Xi ) = µ and var(Xi ) = σ2 < ∞, then X̄n

p−→ µ.

• proof: Chebyschev inequality states that

P (g(X ) ≥ r) =
1
r
E [g(X )] for any r > 0

and so, selecting g(X ) = |X̄n − µ| and r = ϵ,

P(|X̄n − µ| ≥ ϵ) = P
(
(X̄n − µ)2 ≥ ϵ2

)
Chebys.

≤
E
(
X̄n − µ

)2
ϵ2

=
var
(
X̄ 2

n

)
ϵ2

=
σ2

nϵ2

then, for every ϵ > 0, σ2

nϵ2 → 0 as n → ∞. ■
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consistency

• if θ̂n is a statistic that summarizes the information about θ, then

(i) θ̂n is unbiased if E(θ̂n) = θ

(ii) θ̂n is consistent if limn→∞ P(|θ̂n − θ| < ϵ) = 1 for every ϵ > 0

• example: showing the consistency of S2
n by Chebychev. . .

P(|S2
n − σ2| ≥ ϵ) ≤ E(S2

n − σ2)

ϵ2
=

var(S2
n )

ϵ2
,

which converges to zero as long as var(S2
n ) → 0 as n → ∞ (more on this soon) ■
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almost sure convergence

• definition: a sequence of random variables X1,X2, . . . converges almost surely to a random
variable X if, for every ϵ > 0,

P
(
lim

n→∞
|Xn − X | ≥ ϵ

)
= 0

or, equivalently,
P
(
ω|Xn(ω) → X (ω)

)
= 1

• if Xn converges almost surely to X we write Xn
a.s.−→ X .

• convergence in probability is about the behavior of the sequence as the sample size grows, whereas
almost sure convergence is much stronger in that it dictates that Xn(ω) converges to X (ω) for all
ω ∈ Ω, except perhaps for a set of null measure.
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almost sure convergence

• example 1: let Ω = [0, 1] with uniform probability distribution.

• define Xn(ω) = ωn and X (ω) = 0.

• for every s ∈ [0, 1), sn → 0 as n → ∞. So, in this subset, Xn(ω) → 0 = X (ω).

• however, Xn(1) = 1 for every n, which does not converge to X (1) = 0.

• yet, the convergence is "almost" surely since P([0, 1)) = 1, so Xn
a.s.−→ X .
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almost sure convergence

• example 2: let Ω = [0, 1] with uniform distribution and

Xn(ω) =
1
n
ω +

n − 1
n

that is,

X1(ω) = ω ; X2(ω) =
1
2
ω +

1
2

; X3(ω) =
1
3
ω +

2
3

and so on.

• We want to check if Xn converges to X = 1 in probability and almost surely.
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almost sure convergence
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almost sure convergence

• example 2: (almost sure convergence) fix an ω and see if sequence Xn(ω) converges to X (ω) as
n → ∞. Taking a few values of ω,

Xn(0.25) = {0.25, 0.625, 0.75, 0.8125, 0.85, . . . , 0.9925, . . .}
Xn(0.5) = {0.5, 0.75, 0.8333, 0.875, 0.9 . . . , 0.995, . . .}

Xn(0.75) = {0.75, 0.875, 0.9167, 0.9375, 0.95, . . . , 0.9975, . . .}

so, for every ω ∈ A = (0, 1],

lim
n→∞

Xn(ω) = X (ω)

and Ac = {0}. But we have that P(A) = 1, since P({0}) = 0. So Xn(ω)
a.s.→ X (ω).
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convergence in probability

• example 2: (convergence in probability) limn→∞ P (ω : |Xn(ω)− X (ω)| < ϵ) = 1
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convergence in probability

• example 2: instead of calculating the convergence for a fixed point ω, we look at the convergence
of the probability that Xn is not too distant to X .

P (ω : |X1(ω)− X (ω)| < ϵ) = P (|ω − 1| < ϵ) = P (−ω + 1 < ϵ)

= P (ω > 1 − ϵ) = ϵ

P (ω : |X2(ω)− X (ω)| < ϵ) = P
(∣∣∣∣12ω +

1
2
− 1
∣∣∣∣ < ϵ

)
= P

(
−1

2
ω +

1
2
< ϵ

)
= P (ω > 1 − 2ϵ) = 2ϵ

P (ω : |X3(ω)− X (ω)| < ϵ) = P
(∣∣∣∣13ω +

2
3
− 1
∣∣∣∣ < ϵ

)
= P

(
−1

3
ω +

2
3
< ϵ

)
= P (ω > 1 − 3ϵ) = 3ϵ

• the sequence (of probabilities) is {ϵ, 2ϵ, 3ϵ, . . . , 1, 1 . . .} which converges to 1. So, Xn converges in
probability to X , or Xn

p→ X .
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almost sure convergence

• example 3: let, again, Ω = [0, 1] with uniform distribution and define

X1(ω) = ω + I[0,1](ω)

X2(ω) = ω + I[0, 1
2 ]
(ω) , X3(ω) = ω + I( 1

2 ,1](ω)

X4(ω) = ω + I[0, 1
3 ]
(ω) , X5(ω) = ω + I( 1

3 , 2
3 ]
(ω) , X6(ω) = ω + I( 2

3 ,1](ω)

and X (ω) = ω.

• P(|Xn − X | ≥ ϵ) = (bn − an), where limn→∞(bn − an) = 0. So Xn
p→ X .

• however, there is no value ω ∈ Ω such that Xn(ω) → ω = X (ω).

• to see this, fix any ω ∈ Ω. As n grows, we will see a sequence of the type

ω + 1, ω, ω + 1, ω, ω + 1, ω, ...

in which ω + 1 appear infinitely often. Therefore Xn(ω)
a.s

−̸→ X .
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strong law of large numbers

• theorem (strong law of large numbers) (CB 5.5.9): let X1,X2, . . . denote a sequence of iid
random variables such that E(Xi ) = µ and var(Xi ) = σ2 < ∞, then

P
(
lim

n→∞
|X̄n − µ| < ϵ

)
= 1 for every ϵ > 0

that is, X̄n
a.s.−→ µ.
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relation between modes of convergence

• the counterexample shows that Xn
p−→ X ⇏ Xn

a.s.−→ X .

• theorem: Xn
a.s.−→ X ⇒ Xn

p−→ X

• proof: consider a sequence of events

Sn =
⋃
m≥n

{ω : |Xm(ω)− X (ω)| > ϵ}

and so

P {ω : |Xn(ω)− X (ω)| > ϵ} ≤ P{Sn}.

Note that Sn ⊇ Sn+1 ⊇ Sn+2 ⊇ · · · and, in the limit, decreases towards

S∞ =
⋂
n≥1

Sn

with P{Sn}
n→∞−→ P{S∞}. We will show that if Xn

a.s.−→ X , then P{S∞} = 0.
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relation between modes of convergence

• proof (cont’d): if Xn
a.s.−→ X , then the set

S0 =
{
ω : lim

n→∞
Xn(ω) ̸= X (ω)

}
is such that P(S0) = 0. So if we show that S∞ ⊆ S0, then P(S∞) = 0 and we’re done.

Take any point ω /∈ S0. It is such that for a certain n ≥ N

lim
n→∞

Xn(ω) = X (ω) =⇒ |Xn(ω)− X (ω)| < ϵ.

This implies that for n ≥ N, ω /∈ Sn and so ω /∈ S∞. This means that S∞ ⊆ S0. ■
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convergence in distribution

• definition: a sequence of random variables X1,X2, . . . converges in distribution to a random
variable X if

lim
n→∞

FXn (x) = FX (x)

at all points x in which FX (x) is continuous.

• example (CB 5.5.11): if X1,X2, . . . are iid U(0,1) and X(n) = max1≤i≤n Xi , then we expect X(n) to
approach one from below

P(|X(n) − 1| ≥ ϵ) = P(X(n) ≥ 1 + ϵ) + P(X(n) ≤ 1 − ϵ)

= P(X(n) ≤ 1 − ϵ)

= P(Xi ≤ 1 − ϵ for i = 1, . . . , n)

=
[
P(Xi ≤ 1 − ϵ)

]n
= (1 − ϵ)n → 0

(so X(n) converges to 1 in probability).
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convergence in distribution

• example (cont’d): Taking ϵ = t/n,

P
(
X(n) ≤ 1 − ϵ

)
= P

(
X(n) ≤ 1 − t/n

)
= (1 − t/n)n = e−t

since limn→∞
(
1 + x

n

)n
= ex . Upon rearranging,

P
(
n(1 − X(n)) ≤ t

)
= 1 − e−t

and the random variable n
(
1 − X(n)

)
converges in distribution to an exp(1). ■

• it is really about convergence of the cdfs, not the random variables
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relation between modes of convergence

• theorem: the following are equivalent:

(i) Xn
d−→ X

(ii) Fn(t) → F (t) for every continuity point of F

(iii) Eg(Xn) −→ Eg(X ) for every bounded and uniformly continuous g

• definition: a function g is uniformly continuous if for every real number ε > 0 there exists a real
number δ > 0 such that for every x , y ∈ X , |x − y | < δ =⇒ |g(x)− g(y)| < ε.
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relation between modes of convergence

• theorem (CB 5.5.12): Xn
p−→ X ⇒ Xn

d−→ X

• proof: pick an arbitrary g that is bounded and uniformly continuous and let M = sup |g(x)|. For
any ϵ > 0, choose δ such that

|Xn − X | ≤ δ ⇒ |g(Xn)− g(X )| ≤ ϵ

we have that

|g(Xn)− g(X )| ≤ ϵI {|Xn − X | ≤ δ}+ 2M · I {|Xn − X | > δ}

it follows that

|Eg(Xn)− Eg(X )| ≤ E|g(Xn)− g(X )|
≤ ϵP {|Xn − X | ≤ δ}+ 2M · P {|Xn − X | > δ}

because |E(W )| ≤ E(|W |) for any W . The conclusion follows. ■

• corollary: Xn
a.s.−→ X ⇒ Xn

d−→ X
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relation between modes of convergence

• theorem (CB 5.5.13): Xn converges in probability to a constant µ if, and only if, the sequence also
converges in distribution to µ. That is,

P (|Xn − µ| > ϵ) → 0 for every ϵ > 0

is equivalent to

P (Xn ≤ x) →

{
0 if x < µ

1 if x ≥ µ

• proof: Casella & Berger, exercise 5.41.
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central limit theorem

• theorem (central limit theorem) (CB 5.5.14): let X1,X2, . . . denote a sequence of iid random
variables whose mgfs exist in a neighborhood of zero, that is, MXi (t) exists for |t| < h, for some
positive h. Let E(Xi ) = µ and var(Xi ) = σ2 > 0, both finite. Then the cdf Gn(x) of√
n(X̄n − µ)/σ is such that

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

exp

(
−u2

2

)
du

and hence
√
n(X̄n − µ)/σ

d−→ N(0, 1)

• kind of magic: virtually no assumptions and we end up with normality!

• some intuition: sums of “small” (finite variance) independent disturbances
− example: a Cauchy variable will not converge to a Normal
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CLT proof

• proof: let Zi =
Xi−µ

σ
, then 1√

n

∑n
i=1 Zi =

√
n (X̄n−µ)

σ
. By properties of mgfs,

M√
n X̄n−µ

σ

(t) = M∑n
i=1 Zi/

√
n(t) = M∑n

i=1 Zi
(t/

√
n) =

[
MZ (t/

√
n)
]n

expanding MZ (t/
√
n) into a Taylor series, we get

[
MZ (t/

√
n)
]n

= E
(
e

t√
n
X
)n

=

[
E

(
∞∑
k=0

X n (t/
√
n)k

k!

)]n

=

[
∞∑
k=0

M
(k)
Z (0)

(t/
√
n)k

k!

]n

where M
(k)
Z (0) = dk

dtk
MZ (t)

∣∣∣
t=0

. Since the mgfs exists for |t| < h, the Taylor expansion exists for

|t| < h. Using that, by construction, M(0)
Z (0) = 1, M(1)

Z (0) = 0 and M
(2)
Z (0) = 1,[

∞∑
k=0

M
(k)
Z (0)

(t/
√
n)k

k!

]n
=

[
1 +

(t/
√
n)2

2
+ RZ (t/

√
n)

]n
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CLT proof

• proof (cont’d): therefore

lim
n→∞

M√
n X̄n−µ

σ

(t) = lim
n→∞

[
1 +

1
n

t2

2
+ RZ

(
t/
√
n
)]n

using the facts that limn→∞ RZ (t/
√
n) = 0 (Taylor’s theorem) and

lim
n→∞

(
1 +

an
n

)n
= ea

where a = limn→∞ an, we get that

lim
n→∞

M√
n X̄n−µ

σ

(t) = e(t
2/2)

which is the mgf of a standard normal! , ■
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CLT in practice + R codes

samplerCLT <- function(n,choice){
x <- matrix(0,5000,1)
for (i in 1:5000){
if (choice == 1){x[i] <- mean(rnorm(n))}
if (choice == 2){x[i] <- mean(rbinom(n,1,0.5))}
if (choice == 3){x[i] <- mean(rbinom(n,1,0.05))}
if (choice == 4){x[i] <- mean(rbinom(n,10,0.3))}
if (choice == 5){x[i] <- mean(rbeta(n,2,3))}
if (choice == 6){x[i] <- mean(rchisq(n,3))}
if (choice == 7){x[i] <- mean(rt(n,3))}
if (choice == 8){x[i] <- mean(rcauchy(n))}
if (choice == 9){x[i] <- mean(rlnorm(n))}

}
x <- (x-mean(x))
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)),xlab=paste(’Mean ’
,format(mean(x),digits=3),’, Std Dev’,format(sd(x),digits=3)))

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)

}
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std normal
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bernoulli(0.5)
n = 25

Mean  2.4e−17 , Std Dev 0.0991
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bernoulli(0.05)
n = 25
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binomial(10,0.3)
n = 25

Mean  4.68e−17 , Std Dev 0.289
F

re
qu

en
cy

−1.0 −0.5 0.0 0.5 1.0

0
10

0
30

0
50

0

n = 100

Mean  −4.86e−17 , Std Dev 0.144

F
re

qu
en

cy

−0.4 0.0 0.2 0.4 0.6

0
50

15
0

25
0

n = 400

Mean  2.1e−16 , Std Dev 0.0725

F
re

qu
en

cy

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
50

10
0

20
0

n = 1600

Mean  −1.99e−17 , Std Dev 0.0366
F

re
qu

en
cy

−0.10 0.00 0.05 0.10

0
50

10
0

20
0

66 / 96



beta(2,3)
n = 25
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chi-squared(3)
n = 25

Mean  −1.37e−16 , Std Dev 0.485
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t(3)
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cauchy
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log-normal
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Lp and moments convergence

• definition: we say that Xn converges in Lp (“norm-p”) to X if

E|Xn − X |p −→ 0

and we write Xn
Lp

−→ X .

• a common particular case is taking p = 2, the L2-convergence, also known as mean squared error
convergence.

• definition: we say that Xn converges to X in the p-th moments if

EX p
n −→ EX

which is a fairly weak mode of convergence.
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Lp and moments convergence

• theorem: Xn
Lp

−→ X ⇒ Xn
p−→ X

• proof: it is an immediate application of Chebyschev inequality, since

P (|Xn − X | > ϵ) ≤ E|Xn − X |p

ϵp

which completes the proof. ■

• so we have the following summary scheme:

a.s.−→
=⇒

p−→ =⇒ d−→

=⇒
Lp

−→
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stochastic order

• we introduce a set of notations known as Mann and Wald’s Op(1) and op(1).

• definition: let {an} and {bn} be a sequence of deterministic real numbers. We write xn = o(an)
and yn = O(bn) if

xn
an

→ 0 and
∣∣∣∣ ynbn
∣∣∣∣ < M

n > N and for M > 0.

• in particular,

− xn = o(1) if xn converges to zero

− yn = O(1) if the sequence is bounded

− sequence is bounded if converges to zero, so o(1) = O(1)

• the sign "=" is not really an equality: o(1) = O(1) but O(1) ̸= o(1)
− read as the verb "to be": o(1) is O(1), and O(1) is not o(1)
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stochastic order

• example 1: xn = 1 + 1
n
→ 1, so xn ̸= o(1) but xn = O(1) and xn = o(n)

• example 2: xn = sin(n)
n

→ 0, so xn = o(1)

• example 3: xn = {1, 0, 1, 0, 0, 1, . . .}, so xn ̸= o(1) but xn = O(1) and xn = o(n)

• example 4: xn = n2, xn ̸= o(1), xn ̸= o(n), xn ̸= o(n2), xn = o(n3), xn ̸= O(1), xn ̸= O(n),
xn = O(n2)

• example 5: say that xn = o(an). Then xn = an
xn
an

= ano(1)

• example 6: say that yn = o(bn). Then yn = bn
yn
bn

= bnO(1)
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stochastic order
• theorem: we have

(i) O(o(1)) = o(1)

(ii) o(O(1)) = o(1)

(iii) o(1)O(1) = o(1)

• proof (i): let xn = o(1) and yn = O(xn). With M such that
∣∣∣ ynxn ∣∣∣ < M, we have that

|yn| < M|xn| → 0

• proof (ii): assume that xn = O(1) and yn = o(xn). Choose M such that |xn| < M. Then it follows
that

|yn|
M

<

∣∣∣∣ynxn
∣∣∣∣ → 0

• proof (iii): let xn = o(1) and yn = O(1). Then, for M such that |yn| < M,

|xnyn| < |xn|M → 0
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stochastic order

• definition: we write Xn = op(an) if Xn/an converges in probability to zero.

• in particular, Xn = op(1) if Xn
p−→ 0.

• definition: we write Yn = Op(bn) if for any ϵ > 0, there exists M > 0 such that

P
{∣∣∣∣Yn

bn

∣∣∣∣ > M

}
< ϵ

and when Yn = Op(1), there exists M such that P {|Yn| < M} < ϵ for any ϵ > 0. We then say
that Yn is stochastically bounded.

• we also have that Op(op(1)) = op(Op(1)) = op(1)Op(1) = op(1)
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stochastic order and convergence

• theorem: if Xn
d−→ X , and Yn

p−→ c then
(i) Xn = Op(1)

(ii) Xn + op(1)
d−→ X

(iii) XnYn
d−→ cX

• proof (i): fix ϵ > 0 and choose M such that P(|X | > M) < ϵ. Since Xn
d−→ X , there exists some

N such that for n > N, we have

P (|X | > M) < ϵI {|Xn − X | ≤ δ} ⇒ P (|Xn| > M) < ϵ.
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stochastic order and convergence

• proof (ii): let Yn = op(1) and assume that f is uniformly continuous and bounded. It suffices to
show that the following term approaches 0.

|Ef (Xn + Yn)− Ef (X )| ≤ |Ef (Xn + Yn)− Ef (Xn)|+ |Ef (Xn)− Ef (X )|
≤ E|f (Xn + Yn)− f (Xn)|+ |Ef (Xn)− Ef (X )|

the second term is arbitrarily small since Xn
d−→ X . The first term is also arbitrarily small since

|f (Xn + Yn)− f (Xn)| ≤ ϵ · I{|Yn| ≤ δ}+ 2M · I{|Yn| > δ}

where M = sup |f (x)| and ϵ and δ are chosen as in the proof where we showed that
Xn

p−→ X ⇒ Xn
d−→ X .

• The final step follows from taking expectations on both sides and noticing that P{|Yn| > δ} → 0.■

79 / 96



stochastic order and convergence

• proof (iii): since Xn = Op(1) and Yn = c + op(1),

XnYn = Xn(c + op(1))

= cXn + Op(1)op(1)

= cXn + op(1)

and the apply (ii) ■

• Some remarks:
− let Xn

p−→ X and Yn
p−→ Y . Then Xn + Yn

p−→ X + Y .

− however, Xn
d−→ X and Yn

d−→ Y does not imply that Xn + Yn
d−→ X + Y , since the joint

distribution needs to be taken into consideration!

− by the CLT, we have that
√
n X̄n−µ

σ

d→ N(0, 1). So
√
n X̄n−µ

σ
= Op(1). We may equivalently say that

X̄n−µ
σ

= Op
(
1/

√
n
)
, or X̄n = Op

(
1/

√
n
)
, or X̄n − µ = op(1).
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stochastic order and convergence

• theorem (Slutsky) (CB 5.5.17): if Xn
d−→ X and Yn

p−→ a, then

(i) XnYn
d−→ aX

(ii) Xn + Yn
d−→ X + a

• typical application: suppose that the CLT holds and hence

√
n
X̄n − µ

σ

d−→ N(0, 1)

if σ is unknown, then we may employ a consistent estimator, say Sn,

√
n
X̄n − µ

Sn
=

√
n
X̄n − µ

σ

σ

Sn

d−→ N(0, 1)

given that the first fraction converges in distribution to a standard normal distribution, whereas
the second fraction converges to one in probability.
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CMT and beyond

• theorem: let h(·) be a continuous function
(i) Xn

a.s.−→ X ⇒ h(Xn)
a.s.−→ h(X )

(ii) Xn
p−→ X ⇒ h(Xn)

p−→ h(X )

(iii) Xn
d−→ X ⇒ h(Xn)

d−→ h(X ) (continuous mapping theorem)

• theorem (Cramer-Wold device): let {Xn} be a sequence of random vector. Then

Xn
d−→ X ⇐⇒ λ′Xn

d−→ λX
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the delta method

• the CLT shows that under fairly general conditions a standardized random variable has a limit
normal distribution. However, we are often interested in the distribution of functions of this
random variable.

• example 1: what is the distribution of X̄ 2
n as n → ∞?

• example 2: what is the distribution of exp(X̄n) as n → ∞?

• example 3: Brazil and Germany play n matches and the results are {X1,X2, . . . ,Xn} with
Xi ∼Bernoulli(p), where p is the probability that Brazil wins. We may estimate p̂ = X̄n. However,
betting agencies use the odds p

1−p
, so we might consider estimating the odds by p̂

1−p̂
. But what

are the properties of this estimator?
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the delta method

• theorem (delta method) (CB 5.5.24): let Yn be a sequence of random variables that satisfies
√
n(Yn − θ)

d−→ N(0, σ2). For a given function g and specific value θ, suppose that g ′(θ) exists
and is not 0. Then

√
n [g(Yn)− g(θ)]

d−→ n
(
0, σ2[g ′(θ)]2

)
ps: (CB ex. 5.43) if

√
n(Yn − θ)

d−→ N(0, σ2), then Yn
p−→ θ

• proof: performing a first-order Taylor expansion,

g(Yn) = g(θ) + g ′(θ)(Yn − θ) + R(Yn, θ)

where R(Yn, θ) → 0 as Yn → θ. Since Yn
p→ θ it follows that R(Yn, θ)

p→ 0. Apply the Slutsky
theorem to

√
n [g(Yn)− g(θ)] = g ′(θ)

√
n(Yn − θ)

and the result follows. ■
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the delta method

• example 1 (cont’d): from the CLT,

√
n(X̄n − µ)

d−→ N(0, σ2)

so, from the delta method, using g(x) = x2 ⇒ g ′(x) = 2x ⇒ g ′(µ) = 2µ,

√
n(X̄ 2

n − µ2)
d−→ N(0, (2µ)2σ2)

note, however, that µ ̸= 0 or the distribution is degenerate.

• example 2 (cont’d): we should use g(x) = exp(x) ⇒ g ′(µ) = exp(µ) so

√
n(exp(X̄n)− exp(µ))

d−→ N(0, (exp(µ))2σ2)
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the delta method

• example 3 (cont’d): by the CLT, we have that

√
n(p̂ − p)

d−→ N(0, p(1 − p))

take g(p) = p
1−p

, so g ′(p) = 1
(1−p)2 and

√
n

(
p̂

1 − p̂
− p

1 − p

)
d−→ N

(
0,
[
g ′(p)

]2
p(1 − p)

)
d−→ N

([
1

(1 − p)2

]2

p(1 − p)

)
d−→ N

(
0,

p

(1 − p)3

)
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the delta method in practice: example 1

samplerDeltaMethodEx1 <- function(n,mu,sigma){

x <- matrix(0,5000,1)

for (i in 1:5000){x[i] <- (mean(rnorm(n,mu,sigma)))ˆ2}

x <- sqrt(n)*(x-(mu)ˆ 2)
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

if (mu!= 0){

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=0,sd=2*mu*sigma)
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)

}

}
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normal(5,1)
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normal(0,1)
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the delta method in practice: example 2

samplerDeltaMethodEx2 <- function(n,mu,sigma){

x <- matrix(0,5000,1)

for (i in 1:5000){x[i] <- exp(mean(rnorm(n,mu,sigma)))}

x <- sqrt(n)*(x-exp(mu))
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=0,sd=exp(mu)*sigma)
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)

}
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normal(5,1)
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the delta method in practice: example 3

samplerDeltaMethodEx3 <- function(n,mu){

x <- matrix(0,5000,1)

for (i in 1:5000){

phat <- mean(rbinom(n,1,mu))
x[i] <- phat/(1-phat)

}

x <- sqrt(n)*(x-mu/(1-mu))
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=0,sd=sqrt(mu/((1-mu)ˆ3)))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)

}
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bernoulli(0.2)
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the delta method

• general results for the multivariate case: let T = (T1, . . . ,Tk) denote a random vector with mean
θ = (θ1, . . . , θk) and suppose we wish to approximate the variance of a differentiable function
g(T ).

• first-order Taylor expansion:

g(t) ∼= g(θ) +
k∑

i=1

g ′
i (θ)(ti − θi )

E
[
g(T )

] ∼= g(θ) +
k∑

i=1

g ′
i (θ)E(Ti − θi ) = g(θ)

var
[
g(T )

] ∼= E
[
g(T )− g(θ)

]2
= E

[
k∑

i=1

g ′
i (θ)(Ti − θi )

]2

=
k∑

i=1

[
g ′
i (θ)

]2 var(Ti ) + 2
∑

1≤i ̸=j ̸=k

g ′
i (θ)g

′
j (θ)cov(Ti ,Tj)
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the delta method

• theorem (multivariate delta method): suppose that Yn is n-dimensional and

√
n (Yn − θ)

d−→ N(0,Σ)

then
√
n (g(Yn)− g(θ))

d−→ N
(
0,G(θ0)ΣG(θ0)

′)
where G = ∂g(θ)

∂θ′ .
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Reference:

• Casella and Berger, Ch. 5

Exercises:

• 5.1–5.3, 5.5, 5.6, 5.8, 5.10, 5.13, 5.15, 5.22, 5.23, 5.25, 5.30, 5.31, 5.34, 5.36, 5.42.
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