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definition

o definition: (Xi,...,Xy) is a random sample of size n from the population fx(x) if they are
mutually independent random variables with the same marginal pmf/pdf given by fx(x).

o alternatively, we say that Xi,..., X, are independent and identically distributed (iid) with
pmf/pdf fx(x)

fx(x1,...,x|0) = fx(x1|0)---fx(xa|0) = fo xi|0)

o statistical setting: we assume that the population we observe belongs to a given parametric
family, but the true parameter value is unknown.
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joint pdf of an exponential sample

o let Xi,...,X, form a random sample from an exponential distribution with parameter ), then the

joint pdf reads

nq e i1 Xi/A

fx(xt,...,xa|A) = fo(x,'M) = erfx"/)‘ = "
i=1

i=1

e example: what is the probability of all X; last more than 2 years?
P(X1>2,..., X, >2|A) = P(X1>2[\)---P(X, > 2|\)
= [P(X1>2N)]"
_ (efz/x)" — e 2/2
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sampling from an infinite population

e independence assumption implies that drawing X; does not affect the distribution of X; and hence
the latter is from the same population

— it is as if the population were infinite
o finite populations: data collection now matters in that the iid assumption may not hold depending
on how one samples from the population is with vs without replacement
e examples:
(i) bootstrap employs a resampling scheme with replacement

(ii) no replacement kills independence, P(X; = x|X; = x) = 0 but with independence
P(X; = x) = P(X; = x)
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near independence

o definition: Xi,..., X, are nearly independent if population size is large enough and hence one may
evoke random sampling as an approximation

o example: P(X; = x|Xj = x) = =13 = P(X; = x|X; = x) = 0 for n large enough

e example: draw a sample {X,..., X10} without replacement from a discrete uniform population
{1,...,1000} (hypergeometric distribution)

(800) (200)
P(X1 > 200, ..., X0 > 200) = % = 0.106164
10
P(Xy > 200) - - - P(X10 > 200)
0.8'° = 0.107374

14
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statistic

e we usually compute some value after a sample X, ..., X, is drawn.

o definition: let (X1, ..., X,) denote a random sample of size n from a population, then the random
vector Y = T(X1,...,X,) is a statistic if it is a vector-valued function of Xi,..., X, whose
domain includes the sample space of Xi,..., X,

— the definition is very broad, but restriction is that Y cannot be a function of parameters.

e because random samples have a simple probabilistic structure, the sampling distribution of
T(Xy...,Xs) is particularly tractable.
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statistic

e examples:

- T(X]_,...,X,,):]_

— T(x1,...,xn) =x1

— T(x1,...,%n) = max{x1,...,Xn} (maximum)

— T(x1,..-,%n) = % SN Xi = Xn (sample mean)

— T(X1,...,Xn) = ﬁ SN (X — %n)? =82 (sample variance)

— T(x1,...,%n) = \/5 = s (sample standard deviation)
e note that we often write T = T(x1,...,Xn)

o functions of random variables are themselves random variables: we write X, and X, for a particular
realized value.
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sample mean, variance, and standard deviation

o theorem (CB 5.2.4): let x1,. .., x, denote any real numbers and let X, = 2 37 | x;, then
(i) mina 3271 (% — a)* = o7y (xi — %n)?
(i) (n—=1)s2 =301 (% — %n)2 =31 1 x? — nx2

e proof of (i):

n

dxi—a)® = Y (5Tt % —a)

i=1 i=1

— Z(X, — Xn) +2Z X;j — Xn (xn—a)+z
(Rn—a) 327y (xi—%n)=0
= Z(Xi - >_<n)2 + Z()_(n — a)2
i=1 i=1

which is minimized when a = x.
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sample mean, variance, and standard deviation

e proof of (ii): taking a =0,

i=1 i=1
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sample mean, variance, and standard deviation

o theorem (CB 5.2.5): let Xi,..., X, form a random sample from a population and let g(x) be a
function such that E[g(X)] and var[g(x)] exist, then

(i) E[X7 g(Xi)] = nElg(X1)]

(ii) var [0 g(Xi)] = nvar[g(X1)]

e proof: note that

E(Zg(xa) = D Ee(x) ¥ 3 Ee(%) = n-Eg()

for the second part,

E [Z £(X)—E <Z g(x,->ﬂ
_ B [Z 500) ~ S Es(X)

<
L
/-~
g
=
X
~
I
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sample mean, variance, and standard deviation

o proof (cont'd):

E [Z 500 - Y 8500

denoting h; = g(X;) — Eg(X;). Then

E ihi] ZEh2+Z Z (hihy)

i=1 j=1,j#i

2

n 2
E[> h,—]
i=1

Zg - Eg (X))

but E(hih;) = E ([g(X) — Eg(X))][g(X;) — Eg(X))]) = cov(g(Xi),8(X;)) = 0. It follows that
E Zn:h,- = zn:IEhz ZIE —Eg(X))?

= D var(e(x) X Zvar(g(xl)) = n-var(g(X))
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sample mean, variance, and standard deviation

o theorem (CB 5.2.6): if the population has mean y and variance o2, then

(i) E(Xn) = 1 unbiasedness
(i) var(Xp) = o2/n precision
(i) E(S?2) = o2 unbiasedness

e proof (i):

E(X,) = E(iix,) _ %]E (Zx) = "E(X) = u

var(X,) = var 1zn:X = ivar zn:X- = ivar(X) = 0—2
"o n,_'_n2 ,_'_n2 Vo=
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sample mean, variance, and standard deviation

e proof (iii):
E(S?) = E <n11 > oXP - n)'<2D
i=1
i - f T (nEXE — nEX?)
2
= nil ("(02+u2)—n<%+uz))
= (0 o?)
2
= o
which completes the proof. [ ]
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sample mean, variance, and standard deviation

o definition: we say that the statistic T is unbiased for the parameter 6 if E(T) = 6.
e according to the example above, X, is unbiased for 1 and S2 is unbiased for o2.

o we will now discuss in more detail the distribution of X,,.
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sampling distribution of the mean
o theorem (CB 5.2.7): let (Xi,...,X,) be a random sample from a population with pdf fx(x) and
mgf Mx(t) and denote Y = Xy + --- 4+ X,. Then
fz, (x) = nfy(nx)
Mz, (t) [Mx(t/n)]"

e proof: the first result is rather mechanical since X, = n='Y and applying the change-of-variable
theorem. For the latter, apply the theorem that if Xi,..., X, are independent, then for
Z=73" aX+b,

Mz(t) = (efz"f)f[mx,(a,t)

SO

o = T () * [ (9]
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sampling distribution of the mean

e example: let Xi,..., X, form a random sample from a normal distribution with mean p and
variance o2, then the mgf of the sample mean is

M = e = [op (2 D))

e (e + 109)

and hence X, ~ N(u,a°/n)
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sampling from a location-scale family

o let (X1,...,X,) denote a random sample from a location-scale family 2 f (*Z£), then the
distribution of X, has a simple relationship with the distribution of the sample mean Z, of a
random sample from the standard family distribution f(z)

e how?
(i) there exist random variables Z1, ..., Z, such that X; = oZ; + p
(i) Zi,...,Z, are also mutually independent

(i) Xo= 3201 Xi= 1 20 4(0Zi+p) =0Zn+ 1
(i) i Zo ~ g(2), then Xy ~ 1 g (22)

o

o example: if (Xi,...,X,) is a random sample from a Cauchy(p, 6), then X, ~ Cauchy(s, 0?) as
well
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3. sampling from a normal distribution
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sample mean and variance

o theorem: let (Xi,..., X,) be a random sample from a N(u, o) population, then

(i) Xo ~ N(u,02/n)

(i) n;zlsg ~ X%_1

(ii) X, and S2 are independent random variables
(iv) W ~th1

e proof (i): already established
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sample mean and variance

o before moving ahead with the proof of (ii), let's establish some facts about quadratic forms

o definition: let Z be a n-dimensional vector of independent random normal variables. Then
n
7z = Y7 ~ xi
i=1

and the pdf of a x3 is f(x) = Wx(”/z)_le_x/2

o let X ~ N(0,X). Then
XTI IX = X'¥ 2y 22X = 77 ~ ¥
since T2 X ~ N(0, /).

o theorem: let P be an m-dimensional orthogonal projection matrix in R”. That is, P> = P

(projection matrix) and P’P = PP’ = | and P’ = P~* (orthogonal matrix) then Z’'PZ ~ 2 with

Z ~ N(0, ).
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sample mean and variance

o proof (ii): define P, = ¢(¢/¢) ™1 = % where ¢ is the n-dimensional vector of ones. Let
M = | — P, be the annihilator matrix. Note that

— P, is symmetric (verify)
— P, is a projection matrix: P? = %% = “;—;L/ = % =P,

— MX=(—-P)X=X—-1X

S MM=(-PYUP)=(-P)=M

- P X=X,

— (See Hansen (2021) section 3.11 for more details on projection and annihilator matrices.)

TS = S (X=X = (- PIX) (- PIX)

1
= ;X’(I —P) (I -P)X

1.,
= X -P)X
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sample mean and variance

e proof (ii) (cont'd):

XU =PIX = (X =) (1= PYX — u)
because
(X —p)'(I=P) = X(I—P)—p/(I-P)
= X(I=P)— ' —/P)
= X(-=P)—pu <L, — %L/LL/)
= X(U=-P)—p(/ =) = X(I-P)
so

n—1 X =\ X — e
o o o
—— ———
-z =z
given that | — P, is a (n — 1)-dimensional orthogonal projection, it follows from the previous
theorem that "51S52 ~ y2_; [ |

o
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sample mean and variance

o yet some additional results before proof (iii).

fact (verify): if X ~ N(u,X) then AX + B ~ N(Ap+ B, ATA)

e theorem: let Z ~ N(0,/) and A and B non-random matrices. Then A’Z and B’Z are independent
if, and only if, A’B = 0.

proof: define C = (A, B) and write CZ ~ N(Cu, CEC"). using the result above, see that the
covariance between A'Z and B’Z is zero if, and only if, A’B = 0.
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independence and chi-squared random variables

o proof (iii): write

X = 1L'PLX
n

S8 = (U= POX)(( - PIX)

and note that P,X and (/ — P,)X are orthogonal:

(P.X)(I-—P)X = XPX-XPPX
= X'PX-XPX
0

hence P,X and (I — P,)X are independent. X, and S2 are functions of independent random

variables, so are themselves independent. [ ]
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Student’s t distribution

o if X1,...,X, be a random sample of independent N(u,o?), then

NG

X0 — 1
~ N(0,1
—E o, 1)

e however, most of the time, we do not know o, and hence the best we can do is to use

)_(,,—,u _ )_(,,—u 1
\/E Sn - \/E g \/S,%/O'z
I S

vV V/(h—1)

iven that X, and S2 are independent, U ~ N(0,1) and V ~ x2_; are independent.
g
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Student’s t distribution

o then, since U and V are independent, (to simplify, p =n—1)

f-uyv(u7 V)

eni. TG 2R’

for —oco < u < oo and 0 < v < co. Use the transformation

where the inverse functions are

with Jacobian

ou

(.
Il
<&

Bt

u
= and w=v

vv/p

= ty/w/p and v=w

bl ouov ouov _ [w
o ot ow  Ow Ot p

1 _2p 1 (/21 4-v/2
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Student’s t distribution
e So the marginal pdf of T is

fr(t) = /000 fu,v (t\/g, w) ﬁdw

1 1 T ew p2)—1 w2 [W
= e 2w e —dw
et T2 p

1 1 X wgae2?
_ -5 @1+t2/p)  ((P+1)/2)—1
Gt Py fy T

=kernel of G((p+1)/2,2/(1+t2/p))

1 1 - P+1 2 (p+1)/2
(@mET(§)22p /2 \ 2 ) [1+2/p

which is the Student’s t distribution with parameter p.

e Gamma distribution, X ~ G(k,6):

fx(x) = WX

e this completes the proof of (iv)!
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Student’s t distribution

Some properties of the t distribution:

e with p =1, T; becomes the pdf of a Cauchy
e so inference with sample size 2 is impossible!

o E(Tp,) =0if p>1andvar(T,) = ;% if p>2

does not have moments of all orders - no mgf either

e normal distribution approximates well for large p
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Snedecor’s F distribution

o definition: let Xi,..., X, ~ N(,ux,ai) L Ye,...,Ym~ N(,uy,af/), then

5)2(,n/5\2(,m 5)2(,n/0-§( X!2771/(n — 1) F
= = % n—1,m—1
ok /oYy SYm/o% Xm—1/(m—=1)
given that the two chi-squared distributions are independent
[(eta p/2 p/2—1
fo) = 5 (B) x ;
r(5)r) \a/ [+ (p/a)Fra/

with mean E(Fp,q) = %5 if ¢ > 2, so that the expected value of the variance ratio is
approximately one if the sample size is large enough.

e theorem:
(i) if X ~ Fp.q, then 1/X ~ Fg
(i) if X ~ tq, then X2 ~ F1 4

(iii) if X ~ Fp,q, then (p/q)X/(1+ (p/a)X) ~ B(p/2,q/2)
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order statistics

e Some possible applied questions:

— What is the a maximum rainfall in any given year?
— The lowest price of a stock?
— The median value of house prices? (or even quantiles)

e definition: the order statistics of a sample Xi, ..., X, are the sample values placed in ascending
order, denoted

X(l). .. .,X(n)

satisfying min; Xi = X(1) < X2y < -+ < X(ny = max; X;.

e Since X; are random variables, X(;) are also random variables. Our goal is to describe the
pdfs/pmfs for some cases.
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order statistics

e of particular interest is the sample median

M = X(n+1)/2) if nis odd
%X(n/2) + %X((n+1)/2) if nis even

which less sensitive to extreme observations (or outliers) than the sample mean.
e the p-quantile is the observation such that np observations are smaller and n(1 — p) are greater,

p € [0,1].
— lower(upper) quartile is the 0.25-quantile (0.75-quantile)

e the sample range,
R = X —Xu

which is an alternative measure of dispersion.
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order statistics

o theorem (CB 5.4.3): let Xi,..., X, be a random sample from a discrete distribution with pmf
fx(xi) = pi, where x; < xo < ... are the possible values of X. Define
P = 0
PP = p
P = pi+p2

P = ZPI
j=1
Then

s = 3(2)ranr

k

=

I

P(Xy=x) = ; (Z) [P,—k(l —P)" k- P - P,-,l)"—k]

k=j
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order statistics

o proof: fix i and count the number of X; that are less than or equal to x;. The event {X; < x;} is a
"success", and otherwise a "failure". The question becomes: how many successes Y are there?
Given that trials are independent, so Y ~ Bin(n, P;).

o the second part only expresses the differences

P{iXp =x} = P{Xy <xi} = P{Xy) < xi1} u

o there is a similar theorem for the continuous case, but we will do one example instead.
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order statistics

o example: let Xi,..., X, be i.i.d. random variables and define Y = max{Xx,..., Xp}. The
distribution function of Y is given by

Fy(y) = P(m{Xfﬁ}’}>

= J[r{xi<y}

i=1

= (Fr()"
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non-stochastic convergence

e suppose you have a non-stochastic sequence {a,}no;.

o we say that {a,};2; converges to a if, and only if, for each € > 0 there exists a N € N such that if
n > N, we have that

lan —a] < €
and we write a, — a or lim,_00 an = a.
e example 1: a, =1+ % = limpsoo an = 1.

e proof: fix € > 0. We want to select an N such that |a, —a| =n"" <eforn> N. Set N =1 —1.
For n> N =1 —1, we have that n™! < = < e. So the sequence converges to 1.

€ 1—e¢
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non-stochastic convergence

e example 2: a, = 5’",5") = limpho0an=0

e proof: fix € >0 and choose N > 1. Since —1 < sin(n) < 1, we have that |sin(n)| < 1. Therefore

sin(n)_0 _ | sin(n)] < 1 < 1 < 1 .
n n n N 1/e
e example 3: for any w € R, define the sequence
{at,a2,...} = {w+lww+1lww,w+1lwwww+1,...}

and suggest the limit a = w, so |a, — a| = {1,0,1,0,0,1,...}. If the series converges, for any
€ > 0, there must exist an N such that n > N implies that |a, — a|] < €.

Take € = 2. It is true that |a, — a| < € for any n, so suffices to take N = 1.

Take € = 0.5. There isn't an N such that |a, — a| < € for every n > N, so the sequence does not
converge.
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non-stochastic convergence

o definition does not apply to sequence of random variables {X,}: we would have | X, — X| < ¢
sometimes being true, sometimes being false...

o example: take X, ~ N(O, "—:) and suggest X = 0. Even for "very high" n, it is possible that

|Xn — X| > €. So we can never find for sure an N such that | X, — X| < e for n > N.
e we can only say what is the probability of being true.

o the probability is not a random variable!
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convergence in probability

e definition: a sequence of random variables Xi, Xa, ... converges in probability to a random
variable X if, for every € > 0,
0

lim P(|X, — X| > ¢)
n—oo

or, equivalently,
lim P(|X, — X|<¢) = 1
n— oo

o for reasons that will be clearer soon, we will come back to the o-algebra notation for an equivalent
- and more formal - definition.

o definition: let X, be defined on a common probability space (2, F, P). {Xa} converges in
probability to X if, for any € > 0,

P(w: | Xa(w) — X(w)| >€) — 0

e if X, converges in probability to X we write X, — X.
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convergence in probability

e example (cont'd): take X, ~ N(0, "—:) and suggest X = 0.

P(| X1 —X|<e¢) = &(e/o)—P(—¢/o) = 2-P(c/o)—1
P(|Xa—X|<€e) = 2-®(V2e/0)—1
P(|X,—X| <¢) = 2-0(/nefo)—1

where © is the cdf of the standard normal.

e From the definition of a cdf, we get that
lim ®(vVne/o) = 1 = lim 2-®(Vnefo)—1 = 1
n— oo n— oo

so the deterministic sequence of probabilities converges to 1, i.e., X, converges in probability.
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convergence in probability

e theorem (weak law of large numbers) (CB 5.5.2): let X1, Xz, ... denote iid random variables with

E(X;) = u and var(X;) = 02 < oo, then X, -2 p.

e proof: Chebyschev inequality states that

P(g(X)>r) = %]E[g(X)] for any r > 0
and so, selecting g(X) = | X, — p| and r = ¢,
P(|Xo —pul =€) = P((Xo—p)>>e)
ot B (%~ 1)
< 2
B var ()_(,,2) o
- €2 " ne?

2
then, for every € >0, 25 — 0 as n — oo.
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consistency

e if 0, is a statistic that summarizes the information about 6, then
(i) B, is unbiased if E(d,) =6

(ii) By is consistent if limp— o0 P(|0n — 0] < €) = 1 for every € > 0

o example: showing the consistency of S? by Chebychev. ..

E(S2 — o2 var(S?
B(S: 0% > < Do) varls)

which converges to zero as long as var(S2) — 0 as n — co (more on this soon) |
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almost sure convergence

o definition: a sequence of random variables Xi, Xz, ... converges almost surely to a random
variable X if, for every ¢ > 0,
]P’(Iim X, — X| ze) -0
n— oo

or, equivalently,
IP’(UJ\XAQ})%X(LU)) =1

o if X, converges almost surely to X we write X, == X.

e convergence in probability is about the behavior of the sequence as the sample size grows, whereas
almost sure convergence is much stronger in that it dictates that X,(w) converges to X(w) for all
w € Q, except perhaps for a set of null measure.
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almost sure convergence

example 1: let Q = [0, 1] with uniform probability distribution.

o define X,(w) = w" and X(w) = 0.

for every s € [0,1), s" — 0 as n — co. So, in this subset, X,(w) — 0 = X(w).

however, X,(1) = 1 for every n, which does not converge to X(1) = 0.

yet, the convergence is "almost" surely since P([0,1)) = 1, so X, =% X.
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almost sure convergence

e example 2: let Q = [0, 1] with uniform distribution and

Xo(w) = 1w+n—1
n n
that is,
1 1 1
Xi(w) = w; Xe(w) = §w+§ ;o Xa(w) = §w+§
and so on.

e We want to check if X, converges to X = 1 in probability and almost surely.
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almost sure convergence
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almost sure convergence

o example 2: (almost sure convergence) fix an w and see if sequence X,(w) converges to X(w) as
n — oo. Taking a few values of w,

X»(0.25) = {0.25,0.625,0.75,0.8125,0.85, . ..,0.9925, ...}
X»(0.5) = {0.5,0.75,0.8333,0.875,0.9...,0.995,...}
X,(0.75) = {0.75,0.875,0.9167,0.9375,0.95, ...,0.9975, ...}

so, for every w € A = (0, 1],

lim X,(w) = X(w)

n—oo

and A° = {0}. But we have that P(A) = 1, since P({0}) = 0. So X,(w) ¥ X(w).
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convergence in probability

e example 2: (convergence in probability) limyo oo P (w : [Xn(w) — X(w)] <€) =1

1.0

0.8

x_n(omega)
0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

omega
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convergence in probability

e example 2: instead of calculating the convergence for a fixed point w, we look at the convergence
of the probability that X, is not too distant to X.

P(w: | X1(w) — X(w)| <€)

P(w: | Xo(w) — X(w)| <€)

P(w: | X3(w) — X(w)| <€)

o the sequence (of probabilities) is {e, 2¢, 3¢, . ..

probability to X, or X, & X.

P(lw—1]<e€¢) = P(-w+1<e)
Plw>1—¢) = ¢

1 1

Plw>1—-2¢) = 2

P(‘%w+§fl‘<e) =

Plw>1-3¢) = 3e

1 1

P(f%w+§<e)

,1,1...} which converges to 1. So, X, converges in
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almost sure convergence

e example 3: let, again, Q = [0, 1] with uniform distribution and define

Xi(w) = w+ fo,y(w)
Xo(w) = wtlp11(@) , Xs(@) = w1 4 ()
X4(w) = W<|»I[0‘%](w)7 Xs(w) = w+l(%7%](w), Xe(w) = w+l(§yl](w)
and X(w) = w.
o P(|X, — X| > €) = (bs — an), where lim,_,o(bs — an) = 0. So X, =+ X.

o however, there is no value w € Q such that X,(w) = w = X(w).

e to see this, fix any w € Q. As n grows, we will see a sequence of the type

w4+l ww+lww+1lw,..

in which w + 1 appear infinitely often. Therefore X,(w) — X.
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strong law of large numbers

o theorem (strong law of large numbers) (CB 5.5.9): let X1, Xz, ... denote a sequence of iid
random variables such that E(X;) = p and var(X;) = 6% < oo, then

P(Iim |)_(,,—,u\<e):1 for every € > 0
n— oo

that is, X, == L.
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relation between modes of convergence

o the counterexample shows that X, 2+ X =% X, =% X.
e theorem: X, 255 X = X, 2 X

e proof: consider a sequence of events

Soo= |JA{w: Xn(w) = X(w)| > €}

and so
P{w: | Xo(w) — X(w)| > e} < P{S.}.

Note that S, O Spi1 D Spi2 D - -+ and, in the limit, decreases towards

S = [

n>1

with P{S,} =% P{S}. We will show that if X, 2% X, then P{S.} = 0.
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relation between modes of convergence

o proof (cont'd): if X, 22 X, then the set

{w lim X ( #X(w)}

n—o00o
is such that P(So) = 0. So if we show that S C So, then P(Ss) = 0 and we're done.

Take any point w ¢ So. It is such that for a certain n > N

lim Xp(w) = X(w) = |Xa(w)—X(w)| < e

n—oo

This implies that for n > N, w ¢ S, and so w ¢ S. This means that Soc C So. [ |
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convergence in distribution

e definition: a sequence of random variables X1, Xz, ... converges in distribution to a random
variable X if

lim FXn(X) = Fx(X)

n—oo

at all points x in which Fx(x) is continuous.

o example (CB 5.5.11): if X1, Xa,... are iid U(0,1) and X, = maxi<i<a Xi, then we expect X, to
approach one from below

P X — 1 > €) = P(Xp =1+ +P(Xp <1—¢)
P(X(y <1—¢)
P(Xi<l—efori=1,...,n)
P(X; <1—¢)]"

[
= (1-¢)"—=0

so X, converges to 1 in probability).
(n) g
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convergence in distribution

o example (cont'd): Taking e = t/n,
P(Xm<l—¢ = PXm<l—t/n) = (1—t/n)" = e°*

n

since lim,_ o (1 + %) €*. Upon rearranging,
P (n(l — X(,,)) < t) = 1—-¢"

and the random variable n (1 — X(,)) converges in distribution to an exp(1). |

e it is really about convergence of the cdfs, not the random variables
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relation between modes of convergence

o theorem: the following are equivalent:
(i) Xo -L X
(it) Fn(t) — F(t) for every continuity point of F

(iii) Eg(Xn) — Eg(X) for every bounded and uniformly continuous g

e definition: a function g is uniformly continuous if for every real number £ > 0 there exists a real
number § > 0 such that for every x,y € X, [x —y| < d = |g(x) —g(y)| <e.
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relation between modes of convergence

e theorem (CB 5.5.12): X, 2y X = X, A x

e proof: pick an arbitrary g that is bounded and uniformly continuous and let M = sup |g(x)|. For
any € > 0, choose § such that

Xo—X| €6 = |g(X)—g(X)| < e
we have that
80X:) — g(X)| < el {|X0— X| < 6} +2M -1 {[X, — X| > 0}

it follows that

[Eg(Xn) —Eg(X)| < Elg(Xs)—g(X)]
< P{|Xn— X| <0} +2M-P{|X, — X]| > §}
because |[E(W)| < E(|W]) for any W. The conclusion follows. [ ]

e corollary: X, 25 X = X, L) X
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relation between modes of convergence

o theorem (CB 5.5.13): X, converges in probability to a constant y if, and only if, the sequence also
converges in distribution to p. That is,

P(| Xy —pu|>€) — 0 foreverye>0

is equivalent to

0 ifx<upu

P(X, <
Xosx) = {1 ifx>u

o proof: Casella & Berger, exercise 5.41.
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central limit theorem

o theorem (central limit theorem) (CB 5.5.14): let X1, X2, ... denote a sequence of iid random
variables whose mgfs exist in a neighborhood of zero, that is, Mx,(t) exists for |t| < h, for some
positive h. Let E(X;) = u and var(X;) = o2 > 0, both finite. Then the cdf G,(x) of
V(X — p) /o is such that

lim Gn(x) = /X iex —u—z du
n—oo n - oo \/ 21 P 2

and hence /n(X, — 1)/~ N(0,1)

e kind of magic: virtually no assumptions and we end up with normality!

e some intuition: sums of “small” (finite variance) independent disturbances
— example: a Cauchy variable will not converge to a Normal

59 / 96



CLT proof

o proof: let Z; = Xiztt % i, Zi= ﬁ(x%:”) By properties of mgfs,

= Mg z,05(t) = Mso z(t/vn) = [Mz(t/vn)]"

o <ixn (t/\/ﬁ)kﬂ"
k=0

- [Sutoty?]

k=0

M\/ﬁ)_(n;l—b (t)

expanding Mz(t/+/n) into a Taylor series, we get

[Mz(t/vm))" =E (ev7)"

where Mék)(O) dtk Mz( )’ . Since the mgfs exists for |t| < h, the Taylor expansion exists for
|t] < h. Using that, by construction, I\/Iéo)(O) =1, M?)(O) =0 and M?)(O) =1

[ZW t/ﬂ] = [+ s Retey v

k=0
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CLT proof

e proof (cont'd): therefore

. 1t
lim M X,, Kn—p (t) = nILrgo [1 + ;E + RZ (t/\/ﬁ)

n—oo

using the facts that lim,_,o Rz(t/+/n) = 0 (Taylor's theorem) and

lim (1 + ﬂ)n = ¢
n—oo n
where a = lim,_, an, we get that
lim I\/I  Kam (t) = /2
n— oo
which is the mgf of a standard normall © |
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CLT in practice + R codes

samplerCLT <- function(n,choice){
x <- matrix(0,5000,1)

for (i in 1:

if (choice
if (choice

if (choice =

if (choice
if (choice
if (choice
if (choice

500

if (choice ==

if (choice

}

0){

D{x[i]
2){x[i]
3){x[i]
4){x[i]
5){x[il]
6){x[i]
) {x[i]
8){x[i]
9){x[i]

x <- (x-mean(x))

h <- hist(x,breaks=50,main=paste(’n =’,toString(n)),xlab=paste(’Mean ’
,format (mean(x) ,digits=3),’, Std Dev’,format(sd(x),digits=3)))

mean (rnorm(n))}

mean (rbinom(n,1,0.5))}
mean(rbinom(n,1,0.05))}
mean (rbinom(n,10,0.3))}

mean(rbeta(n,2,3))}
mean(rchisq(n,3))}
mean(rt(n,3))}
mean(rcauchy(n))}
mean (rlnorm(n))}

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff (h$mids[1:2])*length(x)

lines(xfit,yfit,col=’red’)
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std normal
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bernoulli(0.5)
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bernoulli(0.05)
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binomial(10,0.3)
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beta(2,3)
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chi-squared(3)
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t(3)
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cauchy
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log-normal
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LP and moments convergence

o definition: we say that X, converges in £? (“norm-p”) to X if
E|X,— X[ — 0
. P
and we write X, — X.

e a common particular case is taking p = 2, the £?-convergence, also known as mean squared error
convergence.

o definition: we say that X, converges to X in the p-th moments if
EXF — EX

which is a fairly weak mode of convergence.
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LP and moments convergence

o theorem: X, £—D> X=X, 2 X

e proof: it is an immediate application of Chebyschev inequality, since

E|X, — X|?

P(X - X|>¢) <

which completes the proof. [ ]

e so we have the following summary scheme:

225
Ny
P d
- = —
7
LP
=
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stochastic order

e we introduce a set of notations known as Mann and Wald's O,(1) and o,(1).

o definition: let {a,} and {b,} be a sequence of deterministic real numbers. We write x, = o(as)
and y, = O(b,) if

n> N and for M > 0.

e in particular,
— xp = o(1) if xn, converges to zero
— yn = O(1) if the sequence is bounded

— sequence is bounded if converges to zero, so o(1) = O(1)

e the sign "="is not really an equality: o(1) = O(1) but O(1) # o(1)
— read as the verb "to be": o(1) is O(1), and O(1) is not o(1)
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stochastic order

e example 1: x, =141 — 1, s0 x, # o(1) but x, = O(1) and x, = o(n)

o example 2: x, = L,S") — 0, so x, = o(1)
o example 3: x, ={1,0,1,0,0,1,...}, so x, # o(1) but x, = O(1) and x, = o(n)

o example 4: x, = n?, x, # 0(1), xn 7 0(n), xn # 0(n?), xa = 0(n?), x» # O(1), x» # O(n),
xn = O(n?)

o example 5: say that x, = o(a). Then x, = 2,32 = ano(1)

o example 6: say that y, = o(bn). Then y, = by32 = b,O(1)
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stochastic order
e theorem: we have

(i) O(o(1)) =o(1)
(ii) o(0(1)) = o(1)
(iii) 0(1)O(1) = o(1)

< M, we have that

o proof (i): let x, = o(1) and y, = O(xa). With M such that

Yn
Xn

lyal < M| — 0

o proof (ii): assume that x, = O(1) and y, = o(x»). Choose M such that |x,| < M. Then it follows
that

|yal
M <

In
Xn

— 0

e proof (iii): let x, = o(1) and y, = O(1). Then, for M such that |y,| < M,
|%aynl < |Xo]M — 0
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stochastic order

o definition: we write X, = op(a,) if X,/a, converges in probability to zero.
e in particular, X, = 0,(1) if X, == 0.
e definition: we write Y, = Op(b,) if for any € > 0, there exists M > 0 such that

|

and when Y, = O,(1), there exists M such that P{|Y,| < M} < € for any € > 0. We then say
that Y, is stochastically bounded.

Ya
by

>/\/l}<e

e we also have that Op(0,(1)) = 0,(0p(1)) = 0,(1)Op(1) = 0p(1)
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stochastic order and convergence

e theorem: if X, < X, and Y, = ¢ then
(i) Xo = 0p(1)
(i) Xn + 0p(1) %> X
(i) XnYn -5 X

e proof (i): fix e > 0 and choose M such that P(|X| > M) < €. Since X, —95 X, there exists some
N such that for n > N, we have

P(X|> M) <el{|Xa—X| <} = P(X: >M)<e
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stochastic order and convergence

e proof (ii): let Y, = 0p(1) and assume that f is uniformly continuous and bounded. It suffices to
show that the following term approaches 0.

[Ef(Xa+ Ya) —Ef(X)] < |Ef(Xs+ Ys) — Ef(Xa)| + [Ef(Xa) — Ef(X)]
< EIf(Xo+ o) — F(X,)| + [EF(X,) — EF(X)|
the second term is arbitrarily small since X, i> X. The first term is also arbitrarily small since
[F(Xn+ Ya) = F(Xa)] < e I{|Ya] <} +2M - I{]|Ya] > 6}

where M = sup |f(x)| and € and ¢ are chosen as in the proof where we showed that
Xo 25 X = Xy -5 X

e The final step follows from taking expectations on both sides and noticing that P{|Y,| > 6} — 0.0
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stochastic order and convergence

e proof (iii): since X, = Op(1) and Y, = c + 0,(1),

XnYs Xn(c + 0p(1))
cXn + Op(1)op(1)

Xn + 0p(1)

and the apply (ii) [ |

e Some remarks:
~let Xp 25 X and Yy 25 Y. Then Xo + Yy -2 X + VY.

— however, X, i) X and Y, i> Y does not imply that X, + Y, i> X + Y, since the joint
distribution needs to be taken into consideration!

— by the CLT, we have that \/E@ 4, N(0,1). So \/ﬁx'%“ = Op(1). We may equivalently say that
% =0p (l/ﬁ), or X, = Op (1/\/5), or Xp—pu= op(1).

80 / 96



stochastic order and convergence

o theorem (Slutsky) (CB 5.5.17): if X, 25 X and Y, -2 a, then
() XnYn -L5 aX
(i) Xo+ Yo -5 X +a

e typical application: suppose that the CLT holds and hence

VR V()
if o is unknown, then we may employ a consistent estimator, say S,
Xo — 1 Xo—p o 4
= — — — N(0,1
\/E Sn \/E pn Sn ( ) )

given that the first fraction converges in distribution to a standard normal distribution, whereas
the second fraction converges to one in probability.
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CMT and beyond

o theorem: let h(-) be a continuous function
(i) X 22 X = h(Xp) 23 h(X)

(i) Xn 25 X = h(Xn) -5 h(X)
(iii) Xn X = h(Xn) <, h(X) (continuous mapping theorem)
e theorem (Cramer-Wold device): let {X,} be a sequence of random vector. Then

Xy -5 X = NX, L AX
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the delta method

e the CLT shows that under fairly general conditions a standardized random variable has a limit
normal distribution. However, we are often interested in the distribution of functions of this
random variable.

o example 1: what is the distribution of X2 as n — co?
o example 2: what is the distribution of exp(X,) as n — co?
e example 3: Brazil and Germany play n matches and the results are {X1, Xz,..., X,} with
Xi ~Bernoulli(p), where p is the probability that Brazil wins. We may estimate p = X,. However,

betting agencies use the odds f”p, so we might consider estimating the odds by 15,3- But what
are the properties of this estimator?
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the delta method

e theorem (delta method) (CB 5.5.24): let Y, be a sequence of random variables that satisfies

V/n(Y, —0) < N(0,o?). For a given function g and specific value 0, suppose that g’(6) exists
and is not 0. Then

Vnlg(Ya) —g(0)] -5 n(0,0°[g'(O)F)
ps: (CB ex. 5.43) if \/n(Y, —0) LN N(0,52), then Y, 25 6

e proof: performing a first-order Taylor expansion,

g(Ya) = g(0)+g'(0)(Ya—0)+R(Ya,0)
where R(Y,,0) — 0 as Y, — 6. Since Y, 2 6 it follows that R(Y,,0) 2 0. Apply the Slutsky
theorem to
Vnlg(Ya) —g(0)] = g'(0)vn(Ys—0)
and the result follows. [ ]
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the delta method

e example 1 (cont’d): from the CLT,

Vn(Xo— ) —5 N(0,0%)

so, from the delta method, using g(x) = x* = g'(x) = 2x = g’ (1) = 2u,

V(X3 —1i?) =5 N(O, (2u)°0”
note, however, that p # 0 or the distribution is degenerate.

e example 2 (cont'd): we should use g(x) = exp(x) = g'(u) = exp(p) so

Vi(exp(Xa) —exp(p))  —= N(O, (exp(p))?0?)
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the delta method

e example 3 (cont'd): by the CLT, we have that

Vn(p—p) = N(O,p(1 - p))

take g(p) = 25,50 g'(p) = ﬁ and
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the delta method in practice: example 1

samplerDeltaMethodEx1l <- function(n,mu,sigma){
x <- matrix(0,5000,1)
for (i in 1:5000){x[i] <- (mean(rnorm(n,mu,sigma))) 2}

x <- sqrt(@)*(x-(mu) "~ 2)
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

if (mu!= 0){

xfit <- seq(min(x),max(x),length=50)
yfit <- dnorm(xfit,mean=0,sd=2*mu*sigma)
yfit <- yfit*diff (h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)
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normal(5,1)
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normal(0,1)
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the delta method in practice: example 2

samplerDeltaMethodEx2 <- function(n,mu,sigma){
x <- matrix(0,5000,1)
for (i in 1:5000){x[i] <- exp(mean(rnorm(n,mu,sigma)))}

x <- sqrt(n)*(x-exp(mu))
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

xfit <- seq(min(x),max(x),length=50)

yfit <- dnorm(xfit,mean=0,sd=exp(mu)*sigma)
yfit <- yfit*diff (h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)
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normal(5,1)
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the delta method in practice: example 3

samplerDeltaMethodEx3 <- function(n,mu)q{
x <- matrix(0,5000,1)
for (i in 1:5000){

phat <- mean(rbinom(n,1,mu))
x[i] <- phat/(1-phat)

}

x <- sqrt(n)*(x-mu/(1-mu))
h <- hist(x,breaks=50,main=paste(’n =’,toString(n)))

xfit <- seq(min(x) ,max(x),length=50)

yfit <- dnorm(xfit,mean=0,sd=sqrt (mu/((1-mu)"~3)))
yfit <- yfit*diff (h$mids[1:2])*length(x)
lines(xfit,yfit,col=’red’)
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bernoulli(0.2)
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the delta method

o general results for the multivariate case: let T = (Tx,..., Tx) denote a random vector with mean
6 = (01, ...,0k) and suppose we wish to approximate the variance of a differentiable function
g(T).

o first-order Taylor expansion:

g(t) = 0)+Zg, )(ti — 6i)

&=
@
3

I

9)+Zg, JE(T: —6) = g(6)

<
[5)
=
—
—~
~
~—
=
1

E[g(T) - &(0)]" = E[_Zg/(e)(ﬂe,-)}

= Z g/(0) var(T) +2 > g/(8)g/(8)cov(T;, Ty)

1<ij#k
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the delta method

o theorem (multivariate delta method): suppose that Y, is n-dimensional and
Vn(Ya—0) -5 N(0,X)
then

Vn(g(Ya) —g(8)) —& N(0,G(60)EG (b))

9g(0)

where G = 0T
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Reference:

o Casella and Berger, Ch. 5

Exercises:

e 5.1-5.3, 5.5, 5.6, 5.8, 5.10, 5.13, 5.15, 5.22, 5.23, 5.25, 5.30, 5.31, 5.34, 5.36, 5.42.
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